

Color Theory – Part 3

Color Coordinates

Color Theory – Part 3

Color Coordinates

Review

Color Perception versus Color Description

Academy

We have described the visual color perception process by showing how the light source, object and observer are together responsible for color perception.

X

Object

Observer

Color
Perception

With the Standard Observer, we can now develop a numerical specification:

Daylight Illuminant Numerical Data

Reflectance Curve Numerical Data

CIE Standard Observer Numerical Data

Colorimetric Description

Review

Standard Observer / Metamerism

Color Order Systems

Munsell - A Visual System

NCS

Natural Color System - Opponent Color Model

datacolor

3 Dimensions of Color

Hue, Chroma, Lightness

Academy

Hue is the term we use to describe a specific color like yellow, red, blue, green, violet.

Chroma is the amount or intensity of a specific hue. The saturation or difference from gray.

Lightness is the total amount of light coming from a sample independent of hue and chroma.

Non-linear Transformation of CIE xyY Color Space

datacolor

Academy

CIE 1976 CIE L*a*b*

Opponent Color Model

CIE L*a*b* Color Space

CIE L*a*b* Color Space

CIELAB Equations

L*, Lightness - Darkness

Academy

 Y_n = Tristimulus Value of White Valid for Y/Y_n > or = 0.01

 $X_n = 94.81$; $Y_n = 100.0$; $Z_n = 107.3$ For D65/10

 $L^* = 0$ Black

CIELAB Equations

a*, red - green

$$a^* = 500 (X/X_n)^{1/3} - 500 (Y/Y_n)^{1/3}$$

Valid for $X/X_n & Y/Y_n > or = 0.01$

 $X_n = 94.81$; $Y_n = 100.0$; $Z_n = 107.3$ For D65/10

CIELAB Equations

b*, yellow - blue

Academy

 $b^* = 200 (Y/Y_n)^{1/3} - 200 (Z/Z_n)^{1/3}$ Valid for $Z/Z_n & Y/Y_n > or = 0.01$

 X_n = 94.81; Y_n = 100.0; Z_n = 107.3 For D65/10

0

datacolor

3 Dimensions of Color – Hue, Chroma, Lightness

CIE L*a*b*

L*a*b* Coordinates

C* / h

Metric Chroma – Metric Hue Angle

datacolor

Color Difference

datacolor

CIELAB Rectangular Coordinates – Da*, Db*, DL*

Color Difference

CIELAB Polar Coordinates – DL*, DC*, DH*

Metric Hue Angle

Academy

$$C^* = (a^{*2} + b^{*2})^{1/2}$$
 $h = tan^{-1} (b^*/a^*)$
 $DL^* = L^*_{BAT} - L^*_{STD}$
 $(+ is lighter)$
 $(- is darker)$
 $DC^* = C^*_{BAT} - C^*_{STD}$
 $(+ is more chroma)$
 $(- is less chroma)$
 $DH^* = 2(C^*_{STD} * C^*_{BAT})^{1/2} sin (dh/2)$
 $(+ is counter-clockwise)$

 $DE^* = (DL^2 + DC^2 + DH^2)^{1/2}$

datacolor

Rectangular and Polar Coordinates

$$dE^* = \sqrt{dL^2 + da^2 + db^2}$$

$$dE^* = \sqrt{DL^2 + DC^2 + DH^2}$$

Color Difference

datacolor**=**

CIELAB L*a*b* vs L*C*H*

CIELAB Color Difference

Red Apple 1 and Red Apple 2

Std. CIE X

21.65

34.21

26.83

datacolor

Academy

D II SI I I DEE (10 A (10 E11 (10

Current Illumi Std. Name

Red Apple 1

Std. CIEY

13.60

18.83

15.91

Std. CIE a

48.50

51.01

47.48

Std. CIE L

43.65

50.49

46.86

Std. CIE b

14.38

26.02

20.42

50.58

57.26

51.68

Std. CIE h

16.51

27.03

23.27

Std. CIE C

8	
96	4
80	
20	1,
99	
200	
30 40	//
20	4/
10	
	400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 Westergrift (ms)
ᆫ	wavelength [nm]

Red Apple 2

D65 10 Deg

A 10 Deg

Delta CieLa	ab D65 / 10 A / 10 F11 / 10		
4	+\D*	+ΔL*	4
m	more ye <mark>l</mark> low		m
- 2	/		- 2
	Stronger		-
*e∆-	\$		0
7	Weaker		7
? —			-5
φ —	more blue		ņ
-4	-3 -2 -1 0 1 2 3 4 -Δb*	-ΔL*	4

Current Illumi	Batch Name	Batch CIE X	Batch CIE Y	Batch CIE Z	Batch CIE L	Batch CIE a	Batch CIE b	Batch CIE C	Batch CIE h
D65 10 Deg	Red Apple 2	24.30	16.28	11.16	47.34	44.58	15.16	47.09	18.78
A 10 Deg		37.04	21.62	3.62	53.62	46.57	26.30	53.49	29.45
F11 10 Deg		30.77	19.11	6.90	50.82	45.29	20.79	49.84	24.66

CIELAB Color Difference – DL*, Da*, Db*, DC*, DH*, DE*

Std. CIE Z

9.29

3.06

5.58

Current Illumi	Batch Name	CIE DL	CIE Da	CIE Db	CIE DC	CIE DH	CIE DE
D65 10 Deg	Red Apple 2	3.69	-3.92	0.78	-3.50	1.93	5.44
A 10 Deg		3.13	-4.44	0.28	-3.78	2.34	5.44
F11 10 Deg		3.96	-2.19	0.37	-1.85	1.23	4.54

CMC Color Difference Equation

datacolor

Academy

Ellipsoidal Tolerancing

DE*

Ellipsoid

$$\Delta E_{CMC(l:c)}^* = \left[\left(\frac{\Delta L^*}{l S_L} \right)^2 + \left(\frac{\Delta C_{ab}^*}{c S_C} \right)^2 + \left(\frac{\Delta H_{ab}^*}{S_H} \right)^2 \right]^{1/2}$$

 S_L = Lightness Tolerance

S_C = Chroma Tolerance

 S_H = Hue Tolerance

l = Lightness Adjustment Factor

c = Chroma Adjustment Factor

CMC Color Difference Equation

Meaning of the Value of the CMC DE Academy

Lightness FactorAllows adjustment of DL* Semi-axis

c = Chroma FactorAllows adjustment of DC* Semi-axis

$$\Delta E_{CMC(l:c)}^* = \left[\left(\frac{\Delta L^*}{l S_L} \right)^2 + \left(\frac{\Delta C_{ab}^*}{c S_C} \right)^2 + \left(\frac{\Delta H_{ab}^*}{S_H} \right)^2 \right]^{1/2}$$

$$DE^*_{CMC} = 1.0$$

Batch is on surface of ellipsoid.

$$DE^{*}_{CMC} < 1.0$$

Batch is inside ellipsoid (Pass)

$$DE^*_{CMC} > 1.0$$

Batch is outside ellipsoid (Fail)

CMC Color Difference Equation

Changing the Value of the CMC Adjustment Factor

$$1 = 2$$
 $c = 1$

$$l = 2$$
 $c = 1.5$

CIE 2000 Color Difference Equation

<u>datacolor</u>

Meaning of the Value of the CIE 2000 DE

Academy

$$\Delta E_{00}^* = \sqrt{\left(\frac{\Delta L'}{k_L S_L}\right)^2 + \left(\frac{\Delta C'}{k_C S_C}\right)^2 + \left(\frac{\Delta H'}{k_H S_H}\right)^2 + R_T \frac{\Delta C'}{k_C S_C} \frac{\Delta H'}{k_H S_H}}$$

Includes lightness, chroma and hue weighting factors
Improved gray colors
Improved performance for blue colors using rotational factor

 K_L = Lightness Factor Allows adjustment of DL* Semi-axis S_L = Lightness Tolerance

 $DE^*_{00} = 1.0$ Batch is on surface of ellipsoid.

 K_C = Chroma Factor Allows adjustment of DC* Semi-axis S_c = Chroma Tolerance

DE*₀₀ < **1.0**Batch is inside ellipsoid (Pass)

 K_H = Hue Factor Allows adjustment of DH* Semi-axis

 $S_H = Hue Tolerance$

DE*₀₀ > **1.0**Batch is outside ellipsoid (Fail)

Webinar – Final Comments

Academy

Questions

Next session:

Academy

We will talk about color tolerances

Color Tolerances

DE

Rectangular

Ellipsoidal

Al Tolerancing

Want to learn more?

Sign up at <u>Datacolor Academy</u> for classroom style lectures and demonstrations covering useful color topics in select venues around the globe

Some useful reading material:

Do You Know How Humans See Color?

Follow Datacolor Blog for more useful information

Thank you and follow us:

www.facebook.com/DatacolorCorporate

www.linkedin.com/company/datacolor

www.youtube.com/user/DatacolorIndustrial